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Abstract— In this paper, a new two-type parameter
estimator is introduced. This estimator is an
extension of the two-parameter estimator presented
by Ozkale and Kagiranlar [10], which includes the
ordinary least squares, the generalized ridge and
the generalized Liu estimators, as special cases.
Here the performance of this new estimator over
the ordinary least squares and two-parameter
estimators is , theoretically, evaluated in terms of
guadratic bias (QB) and mean squared error
matrix (MSEM) criteria, and the optimal biasing
parameters are obtained to minimize the scalar
mean squared error (MSE). Then a numerical
example is given and a simulation study is done to
illustrate the theoretical results of the paper.
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1. INTRODUCTION

Let us consider the linear regression model
Y = Xb+e

M)

,where Y = (y, Ky, )fis random vector of response value,

X = (X, X,,K, X, )¢ isan n’ p regressors matrix of full column rank with
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X, = (X,,K,X, )ffori=12K,n,bisap’ 1 vector of unknown

iz
regression coefficients and e isan n ~ 1 vector of error terms with
expectation E(e) = 0 and covariance matrix Cov(e) = s?I .

According to Gauss-Markov theorem, the ordinary least squares (OLS)

estimator is obtained as follows:
Bos = (XK ) X
Multicollinearity, linear or near linear dependency among the regressors, in

the linear regression model is an important problem faced in applications. If

multicollinearity is present, the small relative changes in the matrix X &
will produce large relative changes in the matrix (X & )'l. Thus the OLS

estimator results in a large variance and it will not be a precise estimator.
In order to deal with the multicollinearity, Hoerl and Kennard [5] proposed
the ordinary ridge (OR) estimator,

bk) = (X ¢+ Kkl ) 'X¢, k> 0.

And Liu [7] proposed the Liu estimator which combines the Stein [13]

estimator with OR estimator,
b)= (XK + 1) (X# +db,,) 0<d<Ll

As well as the above-mentioned estimators, some other biased estimators
were introduced in the literature such as the r-d class estimator [6], the Liu-
type estimator [8], the two-parameter estimator [10], the principal
component k-d class estimator [2], the r-k class estimator [11, 12], the ridge
2 estimator [14].

In Section 2 of this paper, the two-parameter (TP) estimator presented by
Ozkale and Kagiranlar [10] is extended. In Section 3, the performance of the
proposed estimator with respect to quadratic bias (QB) and mean squared

error matrix (MSEM) criteria is discussed, and in Section 4, a method
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presented to choose the biasing parameters. To compare this estimator with
TP and OLS estimators, a numerical example is presented in Section 5, and a

simulation study is done in Section 6.
2. THE PROPOSED ESTIMATOR

In this Section, the extended two-type parameter (ETTP) estimator is

introduced. The model (1) can be rewritten in canonical form,

Y =Za+e

()

,Where Z = XQ, a = Qb , and Q is the orthogonal matrix whose columns
constitute the eigenvectors of X & . Also,

ZZ = QX KQ = L = diag(I,,K,1)

,where I, 3 I, L * | areeigenvalues of X X . The different estimators,

from model (2), are obtained, such as

4, = L 'Z# , which is the ordinary least squares estimator.

a(k)= (L + k) Z¢, k> 0, which is the ordinary ridge estimator.

a@d)= (L+1)Z¥ +dags)= (L+ 1) (L+dl)a,, 0<d<1, which

is the Liu estimator.

The two-parameter estimator introduced by Ozkale and Kagiranlar is defined

by

akd)= (L+k ) (Z& +kdag)= (L+Kkl ) (L+kdl)a,,, k>0 0<d<1
3)

This estimator is derived by minimizing (Y - za)*(Y - za) subject to

(a- da, )¥(a- da,,)=rc,

that is by minimizing the following function



Journal of Military Operations Research, Vol. 1, No. 1, winter 2021 28

(v - za)(r - za)+ ké(a- da,. )¥(a - da . )- c§

where c is a constant and k is a Lagrangian multiplier.
Here, instead of minimizing the above-mentioned function, the following

function is minimized.
¢ <k § ¢ ¢ ol
(Y - Za) (Y - Za)"' a k gai - diéi.OLS) (ai - diéi,OLS) B Cig
i=1

4)
By introducing D = diag(d,K.d ), K =diag(k,K k)  and

1
cz = §fc K \/qg function (4) equals

G

N =

(v - za)’(y - za)+ (Day, - a)K (D4, - a)- g&; KC

gl

(®)

Differentiating the function in (5) with respect to a leads to

(zz +K)a=2Z¥ +Ka,,.

Consequently,

a(K,D)= (L+K) ' (Z¥ + KDag )= (L+K) (L + KD)ay,
(6)

,where k, > 0and 0<d <1 i=12K,p.

This estimator is defined as extended two-type parameter (ETTP) estimator.

Different estimators are derived from a4(K,D) as follows:
() lima(K,D) = 4.

() lima,D)=a

® 0

OLS *
() lima(K,D) = (L+K) Lag, = (L+K) Z¥ , which is the

generalized ridge estimator.
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(V) limaki,D)= (L+ ki) z¢ .
(V)  aki,dl) = ak,d).
(V) a(,D)= (L+1) (L + D)4, , which is the generalized Liu

estimator.

(VII) a(,di)y= (L+1)"(L+dl)a,.

3. THE PERFORMANCE OF THE NEW ESTIMATOR

In this section, the performance of ETTP estimator was compared with TP
estimator by QB criterion, and also was compared with OLS and TP

estimators, by MSEM criterion, theoretically.

a. OB CRITERION

QB(a) = Bias(a)mBias(@), where Bias(d) = E(d)- a.

The following equations were resulted from equations (3) and (6).
Bias(a(k,d)) = gL + kI )(L + kdl )- 1t

()

Bias(a(K,D)) = gL +K)'(L+ KD)- |‘éh

(8)

Consequently,

2 &@ - D0, + T - &d- D0, + k)
a I+ k), + k)7 i

QB(a(K,D)) - QB(a(k,d))

Thus, the following theorem is resulted:
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Theorem 3.1.1: If

I +k 1 +k
! ! ! H -: 25Kli
k(d - 1) “kd-p ! Lak.p

then QB(4(K,D)) < QB(a(k,d)).

b. MSEM CRITERION

The mean squared error matrix of 4 is defined as follows:
MSEM(4) = Cov(a) + Bias(a)Bias(a)¢.

Lemma 3.2.1. (Farebrother [3]). Let M be a positive definite matrix,

namely M > 0, and let d be some vector, then M - dd¢* 0 if and only if

dMm-d £ 1.

Lemma 3.2.2. (Trenkler and Toutenburg [15]). Let 4(j) = AY , j = 1,2 be

two competing estimators of a . Suppose that D = Cov(4,) - Cov(4,) > 0,

where Cov(f)j), j = 12 denotes the covariance matrix of 4,, j = 1, 2. Then

D(4,,4,) = MSEM(4,) - MSEM(4,) * 0 ifand only if dgD + ddg 'd, £ 1,

where MSEM(&,) and d; denote the mean squared error matrix and bias

vector of & i respectively.

It is well-known that

Bias(d, ) = 0
©)

Cov(d,,) = s’L!
(10)
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Using equations (6) and (10), the following equation is obtained:
Cov(a(K,D)) = s?(L + K)Y (L + KD)L" }(L + KD)(L + K) !
By considering

Ro= (L + K)y L + KD)
11)

, it is concluded that

Cov(a(K,D)) = s2Ap A%
12)

On the other hand, from equations (10) and (12), it is concluded that

D, = Cov(a Cov(a(K,D)) = s?(L ' - AL *A®).

OLS) -

(13)

And also

D, = diag

gli + ki)2 - (Ii + kidi)zg
g L0 rk)
Consequently, if k, > 0 and 0< d, < 1,i = 1K,p,then D, > 0.

Now, from equations (8), (9), (11) and (13) and Lemma 3.2.2, the following

theorem is resulted:

Theorem 3.2.1. If k., > 0 and 0< d, < 1,i = 1K,p, then

MSEM(4(K,D)) £ MSEM(4,,)
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if and only if

agghe- 1067(L 1 - AL AR e 1 £ 1.

Using equations (3) and (10), the following equation is obtained:
Cov(a(k,d)) = s?(L + KkI) (L + kd)L %L + kdI)(L + k1) *

By considering

A= (L+kl)YL + kdl)
(14)

, it is concluded that

Cov(a(k,d)) = s?AL 'A¢
(15)

On the other hand, from equations (12) and (15), it is concluded that

D, = Cov(a(k,d)) - Cov(a(K,D)) = s2 (AL ‘A¢- Ab A¥)

(16)

And also
PO+ kd? (1, kd) §

Dzzdiagili(li_l_k)z Ii(|i+ki)2%

Consequently, if
Ni = (Ii + kd)2(|i + ki)2 - (Ii + I(idi)z(li + k)2 > O’ i = lK’p’

then D, > 0.
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Now, noticing that N > 0 if and only if
I &@- d)- k@- d)i> 0,
then, if k,(1- d) > k(- d), i =1K,p, D, > 0 is resulted.

Now, from equations (7), (8), (11), (14) and (16) and Lemma 3.2.2, the
following theorem is resulted.

Theorem 3.2.2. If k(1- d) < min{k (1- d),i = 1K,p}, then

MSEM(A(K,D)) £ MSEM(a(k,d)),

if and only if

a¢lk®- | 062 (AL 'Ag- AL 'R®)+ - Ilmagie- 1 R0 1l e L.
4. SELECTION OF THE PARAMETERS k: AND d.,
i=1K,p

Another criterion measure of goodness of an estimator is

MSE(4) = E a - a)4a - a)i= tr(MSEM(4)) = tr Lov(a)+ Bias(a)Bias(a)

Thus, the optimal values for k, and d,, i = 1K,p, can be derived by

minimizing the following function.
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f(K,D) = MSE(4(K,D))
= tr Cov(a(K,D)) ¥+ Bias(a(K,D))Bias(a(K,D))

2 2
op I + kd 2 op i(di - 1)uai2
- SZa ( i |;) + a g( l,l2
i=1 (I, + k,) Ii i=1 (|| + k.)
_ 2 sl + kd)? + k2d. - 1)?all,
a L(, + k)

The values of d, i=1K,p, which minimizes f(K,D) for fixed k,
i = LK,p, values can be obtained by differentiating f(K, D) with respect to
d,i=1K,p.

1f(K.D) _ 25%(1; + kd)) + %’@ - Tad,
14, ) L+ k)

1i:lyK 1p1

and equating them to zero. After the unknown parameters s® and a,,

i = 1K,p, are replaced with their unbiased estimators, the optimal

estimators of d,, i = 1K, p, for fixed k,, i = 1K, p, values will be obtained
as follows:
2 _ g2
G, = s S sk
P(1,a2 + $2)k,
17)
The k;, i = 1K, p, values which minimize the f(K, D) can be found by

differentiating

qf(K,D) _ 25%(1, + kd.){, - D+ %, ¢, - 1ral,
T (I +k)

, 1= 1K p,

and equating them to zero. After the unknown parameters s® and a,,
i = 1K,p, are replaced with their unbiased estimators, the optimal
estimators of k., i = 1K, p, for fixed d,, i = 1K, p, values will be obtained

as follows:
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~ §? .
kiopt: 2B§2 67 I:lKvp

a’- d E— + &=

I [}
(18)
Theorem 4.1. If
2
ai( zai ‘i:]"K'p'
i + a_z

Proof: From (18), it was concluded.
5. NUMERICAL EXAMPLE

In order to illustrate the performance of the new estimator, the dataset
originally due to Gruber [4], and later discussed by Akdeniz and Erol [1], is
considered. Data found in economics are often multicollinear. Table 5.1
gives Total National Research and Development Expenditures-as a percent
of Gross National product by country: 1972-1986. It represents the

relationship between the dependent variable Y , the percentage spent by the

United States, and the four other independent variables X, X,, X, and X,.
The variable X, represent the percentage spent by France, X,, the
percentage spent by West Germany, X, the percentage spent by Japan, and

X, the percentage spent by the former Soviet Union.
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Table 5.1 Year

Y X, X, X, X,
1972 2.3 19, 2.2 1.9 3.7
1975 2.2 1.8 2.2 2.0 3.8
1979 2.2 1.8 2.4 2.1 3.6
1980 2.3 1.8 2.4 2.2 3.8
1981 2.4 2.0 2.5 2.3 3.8
1982 2.5 2.1 2.6 2.4 3.7
1983 2.6 2.1 2.6 2.6 3.8
1984 2.6 2.2 2.6 2.6 4.0
1985 2.7 2.3 2.8 2.8 3.7
1986 2.7 2.3 2.7 2.8 3.8

By considering X = &, X,,X,, X 4 the eigenvalues of X & are obtained

as follows

|, = 302.9626, |, = 0.7283 |, = 0.0446 |, = 0.0345.

Consequently, the condition number is obtained 8776.381, which suggests

the presence of severe collinearity.

In Table 5.2, estimated QB and MSE of OLS, TP and ETTP estimators are

presented. To obtain these values, first the theoretical values of the QB and

MSE of the estimators were used and then s® and a,, i = 1K,p were

replaced with their unbiased estimators and at last the estimated optimal of

their other parameters were used.

Table 5.2
EMSE EQB
OLS 0.0539 0
TP 0.0483 0.1289
ETTP 0.0359 0.0094
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6. THE MONTE CARLO SIMULATION

To further illustrate the behavior of new estimator, a Monte Carlo simulation

study is performed under different levels of multicollinearity.

Following McDonald and Galarneau [9], the explanatory variables are

generated by

1
X; = (- r?)2z +rz,, i = 1K,p, j = 1K,p

where z,’s are independent standard normal pseudo-random numbers and r

is specified so that the theoretical correlation between any two explanatory
variables is given by r?. Four different values of r specified as 0.7,0.8,0.9

and 0.95 are considered.
Observations on the dependent variable are determined by

Y = bx, +L +bx, +e,i=1K,n,

where g, ’s are independent normal pseudo-random numbers with the mean
0 and variance s?. The values of s? are considered as 0.2,2 and 5.5. Also
b, = 0.2b, = 0.3 b, = 0.4 and b, = 0.5 are considered. For each choice of
r and s?, simulation is replicated 10000 times. The estimated mean squared

error (EMSE) is calculated for 4, ;,4(k,d) and 4(K,D) as follows:

10000

EMSE(4) = ﬁé’l— (a(r)- a)da(r)- a).

The estimated Bias(EB) is calculated for a(k,d) and 4(K,D) as follows:
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10000
1

EB(é) = mé; (é(r)- a).

Consequently, EQB is calculated as follows:
EQB@)= EB@ ¥EB&

a(r), in the above equations, is 4 estimator for each replication of the

simulation. For each replication, the values k and d, i=1K,p,
corresponding 4(K,D) are estimated using the method in Section 4. And the
values k and d, corresponding a(k,d) are estimated using the method

proposed by Ozkale and Kagiranlar [10]. The EMSE vales and EQB values
are presented in Tables 6.1-6.4 and 6.5-6.8, respectively.

Table 6.1- Emsg, " = 07
S 2
0.2 2 55
OLS 0.0133 0.1298 0.3605
TP 0.0133 0.1063 0.2502
ETTP 0.0129 0.0828 0.2035
Table 6.2- EMsE, ' = 08
S 2
0.2 2 5.5
OLS 0.0185 0.1822 0.5054
TP 0.0183 0.1370 0.3220
ETTP 0.0172 0.1081 0.2699
Table 6.3-Emsg, " = 0-9
S 2
0.2 2 5.5
OLS 0.3440 0.3376 0.9358
TP 0.3240 0.2178 0.5278

ETTP 0.0281 0.1814 0.4697
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Table 6.4- EMSE, ' = 0-%
SZ
0.2 2 5.5
oLS 0.0650 0.6473 1.8139
TP 0.0568 0.3734 0.9234
ETTP 0.0454 0.3261 0.8883
Table 6.5- £08, " = 07
SZ
0.2 2 5.5
TP 1.6850° 10°* 0.0073 0.0223
ETTP 1.0663" 10 * 6.3563" 10 * 0.0017
Table 6.6- £0B, " ~ 0-8
SZ
0.2 2 5.5
TP 3.0530" 10 * 0.0109 0.0287
ETTP 1.9256" 10°* 7.2132" 10°* 0.0011
Table 6.7-£QB, " = 09
SZ
0.2 2 5.5
TP 8.5201° 10°* 0.0215 0.0427
ETTP 3.3033° 104 8.5389" 104 9.5165" 104
Table 6.8- £0B, " = 0-99
SZ
0.2 2 5.5
TP 0.0049 0.0353 0.0558

ETTP 3.7517" 10°* 4.0973" 10°* 0.0011
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7. CONCLUSION

In this paper, the two parameter estimator, introduced by Ozkale and
Kagciranlar was extended. The performance of the new estimator was
compared with OLS and TP estimators, theoretically. And also, by using a
numerical example and studying the simulation, it was shown that the
performance of the new estimator, in terms of EMSE criterion is better than
OLS and TP estimators, and, in terms of EQB criterion is better than TP

estimator.
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