
Abstract— In a recent study, researchers 

investigated a class of vessel routing problem and a 

benchmark suite based on real shipping segments 

considering incompatibility constraints. These 

constraints same as pickups and deliveries, cargoes 

selections, travel times and costs and time windows 

state considerable challenges for researchers. 

Considering the literature review on the subject 

and the frequent resolving of this problem with 

Adaptive Large Neighborhood Search (ALNS), we 

proposed a Greedy Randomized Adaptive Search 

Procedure (GRASP) to solve this problem. The 

algorithm was tested on 240 available benchmarks. 

As shown in our experimental results the GRASP 

outperforms all previous heuristics and generates 

near-optimal solutions within minutes. These 

results are noteworthy since we have succeeded to 

improved 35 large instances of this set. 

Keywords— Vessel routing, Pickup and delivery, 

Maritime optimization, Adaptive large neighborhood 

search, Grasp. 

1. INTRODUCTION 

International trade depends heavily on vessel transportation, as it is the only 

cost-effective means for the transportation of large volumes over long 

distances. It is common to distinguish between three main modes of 

operation in maritime transportation: liner, industrial, and tramp shipping. 
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Liner shipping, which includes container shipping, is similar to a bus 

service: fixed schedules and itineraries must be followed. In industrial 

shipping, the operator owns the cargoes and controls the fleet, trying to 

minimize the cargo transportation cost. Finally, a tramp shipping often 

transporting a mix of mandatory and optional cargoes with the goal of 

maximizing profit [1]. In this work, we focus on a class of industrial and 

tramp ship routing and scheduling problems (ITSRSPs).This class of 

problems typically arise in the shipping of bulk products.  

In a recent work in [2], a set of benchmark instances based on real shipping 

segments with 7 to 130 cargoes (pickup-and-delivery pairs) has been made 

available to the academic community. The authors also designed an adaptive 

large neighborhood search (ALNS) heuristic and subsequently investigated 

the impact of randomization as well as that of various search operators [2]. 

However, due to the lack of available lower bounds or optimal solutions, the 

true performance of these methods is unknown for large problems. This 

article contributes to fill this methodological gap, from a metaheuristic 

standpoint. 

 

2. PROBLEM DESCRIPTION 

The objective of ITSRSP is to form routes that minimize the sum of the total 

travel cost and the possible penalties in the case where charter vessels are 

used or some cargoes are not transported. The routes begin at their respective 

starting points but have no specified endpoint, since vessels operate around 

the clock. Every route must be feasible: vessels cannot exceed their capacity, 

cargoes can be serviced only within their prescribed time windows, and 

ships cannot transport incompatible cargoes. Furthermore, the routes must 

respect pairing and precedence constraints. 
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We consider a shipping company in which take place orders for the pickup 

and delivery. In the following mathematical formulation shown for the 

routing and scheduling of vessels. If we let i define a cargo, there is a node i 

(same index for p-d pairs) related to the loading port and a node i+n related 

to the unloading port, with n being the number of cargoes. The set of loading 

and unloading nodes shows with  𝑁𝑃 and  𝑁𝐷, respectively. A set of a 

visited node by the vessel v is considered to be 𝑁𝑣, and this set contains an 

origin node o(v) and a destination node d(v). The set of arcs that vessel v can 

pass through is 𝐴𝑣. We also introduce 𝑁𝑣
𝑃 = 𝑁𝑃 + 𝑁𝑣 ,  𝑁𝑣

𝐷 = 𝑁𝐷 + 𝑁𝑣  for 

loading and unloading nodes can be visited by vessel v, respectively. 

Each node in the search space has a time window. The cost of shipping from 

i to j using vessel v is Cijv, and the relevant travel time is Tijv. The time at 

which service starts at node i using vessel v is tiv, and liv is the total load on 

board after completing service at node i using vessel v. The variables xijv are 

binary flow variables, denoting whether vessel v moves directly from node i 

to node j. Binary variables yi show whether cargo i is transported by the 

available vessel fleet. If the cargo is not transported with the available ship 

fleet, a cost 𝐶𝑖
𝑆 is incurred. The mathematical formulation for the vessel 

routing problem is given below [3]. 

Min ∑ ∑ 𝐶𝑖𝑗𝑣 𝑋𝑖𝑗𝑣 + ∑ 𝐶𝑖 
𝑆

𝑖∈𝑁𝑃(𝑖,𝑗)∈𝐴𝑣𝑣∈𝑉 𝑦𝑖                                                                                                     

(1) 

S.t. 

∑  𝑣𝜖𝑉 ∑ 𝑥𝑖𝑗𝑣 + 𝑦𝑖 = 1 ,𝑗𝜖𝑁𝑣
                                                                      i∈𝑁𝑃,                                          

(2) 

∑ 𝑋0(𝑣)𝑗𝑣 = 1 ,𝑗∈𝑁𝑣
                                                                                  v ∈ V,                                          

(3) 

∑ 𝑋𝑖𝑗𝑣 − ∑ 𝑋𝑗𝑖𝑣 = 0 , 𝑗∈𝑁𝑣
                                                                        𝑗∈𝑁𝑣

𝑣 ∈ 𝑉, 𝑖 ∈

𝑁𝑣\ {𝑜(𝑣), 𝑑(𝑣)},        (4) 

∑ 𝑋𝑗𝑑(𝑣)𝑣 = 1 ,𝑗∈𝑁𝑣
                                                                                 v ∈ V,                                           

(5) 

𝑙𝑖𝑣 + 𝑄𝑗 − 𝑙𝑗𝑣 ≤ 𝐾𝑣(1 − 𝑥𝑖𝑗𝑣),                                                                       𝑣 ∈ 𝑉, 𝑗 ∈

𝑁𝑣
𝑃, (𝑖, 𝑗) ∈ 𝐴𝑣 ,             (6) 
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𝑙𝑖𝑣 − 𝑄𝑗 − 𝑙(𝑛+𝑗)𝑣 ≤ 𝐾𝑣(1 − 𝑥𝑖(𝑗+𝑛)𝑣),                                                        𝑣 ∈ 𝑉, 𝑗 ∈

𝑁𝑣
𝑃, (𝑖, 𝑛 + 𝑗) ∈ 𝐴𝑣 ,     (7) 

0≤𝑙𝑖𝑣≤𝐾𝑣 ,                                                                                                            𝑣 ∈ 𝑉, 𝑖 ∈
𝑁𝑣

𝑃,                                 (8) 

𝑡𝑖𝑣 + 𝑇𝑖𝑗𝑣 − 𝑡𝑗𝑣 ≤ ( 𝑇𝑖̅ + 𝑇𝑖𝑗𝑣)(1 − 𝑥𝑖𝑗𝑣),                                                    𝑣 ∈ 𝑉, 𝑗 ∈

𝑁𝑣
𝑃, (𝑖, 𝑛 + 𝑗) ∈ 𝐴𝑣 ,      (9) 

∑ 𝑋𝑖𝑗𝑣 − ∑ 𝑋(𝑛+𝑖)𝑗𝑣 = 0 , 𝑗∈𝑁𝑣𝑗∈𝑁𝑣
                                                               𝑣 ∈ 𝑉, 𝑖 ∈

𝑁𝑣
𝑃,                                 (10) 

𝑡𝑖𝑣 + 𝑇𝑖(𝑛+𝑖)𝑣 − 𝑡(𝑛+𝑖)𝑣 ≤ 0,                                                                           𝑣 ∈ 𝑉, 𝑖 ∈

𝑁𝑣
𝑃,                                 (11) 

𝑇𝑖≤𝑡𝑖𝑣≤𝑇𝑖̅ ,                                                                                                           𝑣 ∈ 𝑉, 𝑖 ∈
𝑁𝑣 ,                                  (12) 

𝑦𝑖 ∈ {0,1} ,                                                                                                         𝑖 ∈
𝑁𝐶 ,                                              (13) 

𝑋𝑖𝑗𝑣 ∈ {0,1},                                                                                                     𝑣 ∈ 𝑉, (𝑖, 𝑗) ∈

𝐴𝑣 ,                            (14) 

 

The objective function is to minimize sums up the costs from operating the 

fleet plus the cost of spot charters. Constraints (2) show that all cargoes must 

either be picked up by a vessel or transported using spot charter. Constraints 

(3), (5) state the movements of the vessels. The vessel's load in the loading 

and unloading nodes is indicated through constraints (6) and (7). Constraints 

(8) assure that the load does not exceed the vessel capacity. Constraints (9) 

make sure that the time at which service starts is possible with respect to 

travel times. Constraints (10) sure that if cargo is loaded, its unloading port 

is also visited by the same vessel. Precedence requirements are imposed 

through constraints (11). Time windows are shown by constraints (12), 

finally, binary requirements on the spot charter and flow variables are given 

by constraints (13) [3]. 

The above model is both credible for deep sea and short sea problems. It is 

also credible-both for the full load and the mixed load case, though more 

impressive formulations can be obtained for the full load case, see for 

example[4]. The industrial and tramp vessel cargo routing and scheduling 

problem is NP-hard, being more common than the TSPTW [5][3]. 
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To our knowledge, the study of researchers [3] is the only one to report 

lower bounds and optimal solutions for these benchmark instances, obtained 

by solving a mixed-integer programming (MIP) formulation. Exact methods 

like MIP could solve the majority of the instances, but their CPU time 

becomes widely vary, even for instances with similar characteristics. 

Therefore, fast metaheuristic solutions remain indispensable for applications 

requiring a response in a guaranteed short time. For this purpose, we have 

examined the GRASP metaheuristic to solve this problem. Our reason for 

choosing the GRASP algorithm was to pick out a metaheuristic that is close 

to the successful heuristic previously presented for this problem so that we 

can use the powerful operators of the previous method[2][3]. The second 

reason for choosing this algorithm was to solve the vessel routing problem 

based on our previous experience that generally this algorithm generates 

good solutions to the routing problems. 

3. PROPOSED ALGORITHM 

GRASP [6] is a multi-start metaheuristic that has been widely used for 

finding good quality solutions in high variety to many hard 

combinatorial optimization problems. It relies on greedy randomized 

constructions and local search phase. The problem involves many 

decisions at different levels. The main idea is first to estimate point-to-

point requests and then, based on this information, to apply the 

iterative GRASP phases of construction and local search. Each of 

these phases is described next. 

a) Construction phase: Add-Node procedure 

A solution consists of a set of routes followed by the number of ships 

and cargoes. In each route, some cargoes are transported by a specific 
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vessel. The sequence of loading and unloading cargo is represented by 

using the cargo number twice, first for the pickup and then for the 

delivery of the cargo. The initial which ensures that the solution is 

feasible at each stage. In the constructive phase, we find all feasible 

positions for each cargo. Since the search space of a problem for 

generating the initial solution is very large and gradually expanding, 

we start with the empty solution. For this purpose, we used the idea 

presented in the ALNS operators [7] to perform a gradual solution 

phase. The sequence is that we select a list of cargoes at random. 

These requests represent the removal of cargoes from the problem 

space and their placement elsewhere in the candidate solution. The 

removal operator is performed with the random selector. After remove 

requests, the cargoes will be gradually reinserted to the candidate 

solution. The insertion operation is to consider all the locations that 

lead to a feasible solution. Note that at this point we will add to each 

candidate list any places that incur a lower incremental cost for pickup 

and delivery positions. Then we sort the candidate list in ascending 

order, and according to the input parameter RCL from a percentage of 

the list members, a solution is chosen at random. The same goes for 

the rest of the cargo. 

b) Construction phase: Add-Node procedure 

A solution generated by the constructive phase might not necessarily 

satisfy the capacity constraints. Therefore, the goal of the local search 

is to improve the quality of the solution or to repair infeasibility if 

needed. The proposed local search that depicted in Figure 3 is ALNS 
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without Adaptive factor. After we implemented ALNS heuristic to 

apply the local search phase of GRASP, we found that the adaptive 

weight factor makes the algorithm to slow down so we used large 

neighborhood search (LNS) with 5 operators to explore and exploit 

the search space. In this phase, we perform a local search step with 

respect to the solution of the previous step. For local search, we use 

one of the three removal operators in ALNS[7].   

The local search used in the proposed method has all the operators 

expressed in [7], except that the adaptive weight procedure for 

selecting each operator in each iteration not used. The procedure is to 

select a random number between [0, 1] and select one of the available 

operators. It should be noted that since the Shaw operator yields better 

results in the ALNS method, it has a higher chance of selection (1% 

chance of selection) and two Random and Worst operators of equal 

chance (1% chance of choice) for the cargo removal operation. To 

perform the local search phase, a variable called the neighborhood 

radius is used to specify our local search range. In the local search 

phase, we found the solutions that make a decision using the 

acceptance criterion in the ALNS heuristic [7], [3]. Below we discuss 

the acceptance criterion factor. 

c) Construction phase: Add-Node procedure 

Simple acceptance criteria would be to only accept solutions that are 

better than the current solution. We used the acceptance criterion in 

simulated annealing which accepts solutions that are worse than the 

current solutions too with probability〖 e〗^(-|f-f_new |/T), where T > 0 

is the temperature. To do this in the first iterations which the 
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difference in the cost of solutions is increased should limit the 

acceptance of worse solutions and in the last iteration which 

converges almost to the best solution, we have the chance of moving 

zigzag in the search space.  

This criterion is set for the first 20 iterations. We calculate the average 

difference of the worsening of the solutions. This average as the 

feedback of the first 20 first repetitions along with the initial 

temperature parameter T can be used in the acceptance probability 

formula. Therefore, based on the benchmark size, we set the initial 

temperature as follows: 

Tstart = number of cargoes × 1000 + avg (Σf_i-f_(i+1)) 

According to our investigations, the initial temperature T for 

benchmarks with a cargo size of over 50 is more significant. Because 

there is a possibility that there will be no feedback from the worsening 

of the responses in 20 iterations in large benchmarks. 

4. EXPERIMENTAL RESULTS  

The proposed algorithm in this paper was coded in C++ and executed on an 

Intel Cori7 with 2.10 GHz CPU, 8 GB RAM, and a 64-bit operating system. 

As described before, there are 240 standard instances of this problem. The 

GRASP was executed ten times for each benchmark, each run including 

25,000 iterations. These instances are divided into four groups of 60, 

according to problem topology and cargo type¬¬. The mixed load instances 

have up to 130 cargoes and 40 vessels, whereas the full load instances have 

up to 100 cargoes and 50 vessels. So far, 123/240 instances remain open [2]. 

In the full-load instances, each delivery should be visited immediately after 

its associated pickup due to the absence of residual capacity for other loads. 
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This property is no longer valid for mixed load instances. Furthermore, short 

and deep-sea instances consider different geographical regions. The short sea 

instances represent shipments among European ports, whereas the deep sea 

instances involve long-distance ships [3]. This will indicate how difficult 

industrial and tramp vessel routing and scheduling problems are to solve to 

optimality, although we solved larger instances by using a tailored method. 

According to Table 1 and focusing on large-sized instances, 35 instances 

with 50 and 130 cargoes and between 20 and 40 vessels improved. Instances 

consist of both short-sea and deep-sea shipping benchmarks.  

This section reports our computational experiments with the two ALNS 

algorithms and the GRASP[3], [2]. Our aim is twofold: 

• We compare the proposed algorithms, and evaluate their ability to solve 

practical-size vessel routing problems to optimality in limited time 

• In situations where a faster response is sought, we evaluate the quality of 

the solutions produced by the GRASP metaheuristic. Obtaining a good 

sequence of cargoes during constructing a route is the main difference 

between this algorithm and its priors. In Table 1, the first column shows the 

number of benchmarks and the second one presents the name of instances in 

each group. The old and new best-known solutions and the average gap in 

each group can be seen in the next column repeatedly. The following 

formula is used for calculating the gap between the optimal solution and the 

obtained solution for each benchmark: 

 

Gap = 
 (𝑜𝑙𝑑 𝑏𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛)−(𝑛𝑒𝑤 𝑏𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛)

(𝑜𝑙𝑑 𝑏𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛)
×100 

Furthermore, among 2400 runs (10 runs of 240 instances) of each 

benchmark, the best performance with is 0.64 % where the performance is 

calculated based on the gap to the best-known solutions. The results of the 

tests also led to finding some new best results for the data instances used. 
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Table 1- Experimental results 

According to Table 1 and Figure 2, not only our proposed method decreased 

the average gaps especially in large instances but also improved convergence 

time for the optimal solution. As you can see, as the number of cargoes 

increases, the convergence time for the optimal solution increases 

exponentially. In this environment, the use of operators to generate solutions 

Number 

of 

Instances 

#Instance Old Best Cost New Best Cost Average GAP  

(%) ALNS GRASP 

1 SHORTSEA_MUN_C23_V13_HE_2 2255870 2255469 -0.018 

2 SHORTSEA_MUN_C80_V20_HE_3 9763401 9726826 -0.375 

3 SHORTSEA_MUN_C80_V20_HE_5 10983117 10948325 -0.317 

4 SHORTSEA_MUN_C100_V30_HE_1 12845591 12780320 -0.508 

5 SHORTSEA_MUN_C100_V30_HE_2 13057536 13000084 -0.440 

6 SHORTSEA_MUN_C100_V30_HE_3 12088444 12082339 -0.051 

7 SHORTSEA_MUN_C100_V30_HE_4 13791917 13765993 -0.188 

8 SHORTSEA_MUN_C130_V40_HE_1 16524192 16505513 -0.113 

9 SHORTSEA_MUN_C130_V40_HE_2 16713067 16651942 -0.366 

10 SHORTSEA_MUN_C130_V40_HE_3 15862154 15786198 -0.479 

11 SHORTSEA_MUN_C130_V40_HE_4 17305841 17194544 -0.643 

12 SHORTSEA_FUN_C70_V30_HE_1 10088768 10074896 -0.137 

13 SHORTSEA_FUN_C70_V30_HE_3 10314521 10309352 -0.050 

14 SHORTSEA_FUN_C70_V30_HE_4 10910832 10909957 -0.008 

15 SHORTSEA_FUN_C90_V40_HE_3 12767716 12703025 -0.507 

16 SHORTSEA_FUN_C90_V40_HE_5 13720466 13654943 -0.478 

17 SHORTSEA_FUN_C100_V50_HE_1 13893237 13864911 -0.204 

18 SHORTSEA_FUN_C100_V50_HE_3 13206559 13189976 -0.126 

19 SHORTSEA_FUN_C100_V50_HE_4 14936198 14921380 -0.099 

20 SHORTSEA_FUN_C100_V50_HE_5 14106741 14059978 -0.331 

21 DEEPSEA_MUN_C60_V13_HE_1 81709586 81518899 -0.233 

22 DEEPSEA_MUN_C80_V20_HE_3 78918099 78687219 -0.293 

23 DEEPSEA_MUN_C100_V30_HE_2 154533570 153998958 -0.346 

24 DEEPSEA_MUN_C100_V30_HE_4 157017186 157010893 -0.004 

25 DEEPSEA_MUN_C130_V40_HE_1 239877031 239326604 -0.229 

26 DEEPSEA_FUN_C50_V20_HE_1 41398100 41377030 -0.051 

27 DEEPSEA_FUN_C50_V20_HE_2 37872273 37870753 -0.004 

28 DEEPSEA_FUN_C50_V20_HE_3 39916853 39910778 -0.015 

29 DEEPSEA_FUN_C70_V30_HE_1 142923793 142813482 -0.077 

30 DEEPSEA_FUN_C70_V30_HE_4 156541043 156449624 -0.058 

31 DEEPSEA_FUN_C90_V40_HE_4 211046180 210828532 -0.103 

32 DEEPSEA_FUN_C100_V50_HE_1 207105715 206778407 -0.158 

33 DEEPSEA_FUN_C100_V50_HE_3 218438412 217835593 -0.276 

34 DEEPSEA_FUN_C100_V50_HE_4 221248187 221112912 -0.061 

35 DEEPSEA_FUN_C100_V50_HE_5 224430601 223341048 -0.485 



11                  A GRASP Algorithm for Pickup and Delivery Problem… 
____________________________________________________________________ 

gradually can lead to a prolonged implementation process and slow 

convergence. We also observed the effect of exploring problem space with 

insertion operators in the present study. This was done by the initial phase of 

the GRASP algorithm in the form of inserting cargoes into the routes. Figure 

2 displays the number of instances solved by GRASP and ALNS as a 

function of the CPU time limit. GRASP visibly produces superior results, its 

performance depends on the ability to do a complete route enumeration at 

the root node within the optimality gap. The difference is that in large size 

cargo instances are easier for GRASP to solve, finding optimal solutions of 

instances with up to 60 cargoes. Among the other instances with 7-35 

cargoes, the ALNS and GRASP have equal execution time. 

 

 

Figure 2.  Convergence time comparison between GRASP and ALNS. 

 

  

0

2

4

6

8

A
V
G
-T
IM

E(
S)

TH
O
U
SA

N
D
S

BENCHMARKS

Avg_Time(GRASP) Avg_Time(ALNS)



Journal of Military Operations Research, Vol. 1, No. 1, winter 2021               12 

___________________________________________________________________ 

GRASP has been widely used for finding good quality solutions in high 

variety to many hard combinatorial optimization problems. As the runtime 

exponentially increases as the instance size grows, GRASP not only 

succeeded in producing 35 quality samples but also reduced the time to find 

the optimal solution compared with the ALNS. 

5. CONCLUSION 

As demonstrated in this paper, the best method that has been published for 

solving the vessel routing problem with pickup and delivery (VRPPDPs) 

was an ALNS heuristic. Our proposed method was the GRASP algorithm 

which could improve the results in 35 instances. In the ALNS method, 

removal operators played the role of randomization and insertion operators 

were used for greediness. The adaptive weight factor was used to make a 

tradeoff between the randomization and greediness. These properties are 

clearly present in the GRASP algorithm, which performs both randomization 

and greediness using both phases and performs adaptive weigh with a strict 

candidate list. According to the literature in [4], the authors underlined the 

importance of the acceptance criterion in finding optimal solutions. Also, 

after fine-tuning the parameters in the acceptance criterion in ALNS, we 

used this factor to accept solutions in the GRASP algorithm. Statistical 

analysis revealed that our proposed method improved the quality and 

convergence of the solutions compared to the ALNS algorithm [4]. The 

results indicate that the proposed method improved the 35 instances from the 

large size of the cargoes. 

Future works include using the novel metaheuristics for improving the 

sequence of cargoes in other problems that are almost similar to the 

VRPPDPs.  
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